8 #define NO_IMPORT_ARRAY
9 #define PY_ARRAY_UNIQUE_SYMBOL pbcvt_ARRAY_API
10 #include "pyboostconverter/pyboostcvconverter.hpp"
11 #if CV_VERSION_MAJOR == 3
16 static int failmsg(
const char *fmt, ...) {
21 vsnprintf(str,
sizeof(str), fmt, ap);
24 PyErr_SetString(PyExc_TypeError, str);
28 static PyObject* failmsgp(
const char *fmt, ...)
34 vsnprintf(str,
sizeof(str), fmt, ap);
37 PyErr_SetString(PyExc_TypeError, str);
42 class PyAllowThreads {
45 _state(PyEval_SaveThread()) {
48 PyEval_RestoreThread(_state);
51 PyThreadState* _state;
57 _state(PyGILState_Ensure()) {
60 PyGILState_Release(_state);
63 PyGILState_STATE _state;
67 ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2
74 stdAllocator = Mat::getStdAllocator();
79 UMatData* allocate(PyObject* o,
int dims,
const int* sizes,
int type,
81 UMatData* u =
new UMatData(
this);
82 u->data = u->origdata = (uchar*) PyArray_DATA((PyArrayObject*) o);
83 npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o);
84 for (
int i = 0; i < dims - 1; i++)
85 step[i] = (
size_t) _strides[i];
86 step[dims - 1] = CV_ELEM_SIZE(type);
87 u->size = sizes[0] * step[0];
92 UMatData* allocate(
int dims0,
const int* sizes,
int type,
void* data,
93 size_t* step,
int flags, UMatUsageFlags usageFlags)
const {
95 CV_Error(Error::StsAssert,
"The data should normally be NULL!");
97 return stdAllocator->allocate(dims0, sizes, type, data, step, flags,
102 int depth = CV_MAT_DEPTH(type);
103 int cn = CV_MAT_CN(type);
104 const int f = (int) (
sizeof(
size_t) / 8);
106 depth == CV_8U ? NPY_UBYTE :
107 depth == CV_8S ? NPY_BYTE :
108 depth == CV_16U ? NPY_USHORT :
109 depth == CV_16S ? NPY_SHORT :
110 depth == CV_32S ? NPY_INT :
111 depth == CV_32F ? NPY_FLOAT :
114 f * NPY_ULONGLONG + (f ^ 1) * NPY_UINT;
116 cv::AutoBuffer<npy_intp> _sizes(dims + 1);
117 for (i = 0; i < dims; i++)
118 _sizes[i] = sizes[i];
121 PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);
123 CV_Error_(Error::StsError,
124 (
"The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
125 return allocate(o, dims0, sizes, type, step);
128 bool allocate(UMatData* u,
int accessFlags,
129 UMatUsageFlags usageFlags)
const {
130 return stdAllocator->allocate(u, accessFlags, usageFlags);
133 void deallocate(UMatData* u)
const {
136 PyObject* o = (PyObject*) u->userdata;
142 const MatAllocator* stdAllocator;
146 NumpyAllocator g_numpyAllocator;
150 PyObject* fromMatToNDArray(
const Mat& m) {
155 if (!p->u || p->allocator != &g_numpyAllocator) {
156 temp.allocator = &g_numpyAllocator;
157 ERRWRAP2(m.copyTo(temp));
160 PyObject* o = (PyObject*) p->u->userdata;
165 Mat fromNDArrayToMat(PyObject* o) {
168 if (!PyArray_Check(o)) {
169 failmsg(
"argument is not a numpy array");
171 m.allocator = &g_numpyAllocator;
173 PyArrayObject* oarr = (PyArrayObject*) o;
175 bool needcopy =
false, needcast =
false;
176 int typenum = PyArray_TYPE(oarr), new_typenum = typenum;
177 int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S :
178 typenum == NPY_USHORT ? CV_16U :
179 typenum == NPY_SHORT ? CV_16S :
180 typenum == NPY_INT ? CV_32S :
181 typenum == NPY_INT32 ? CV_32S :
182 typenum == NPY_FLOAT ? CV_32F :
183 typenum == NPY_DOUBLE ? CV_64F : -1;
186 if (typenum == NPY_INT64 || typenum == NPY_UINT64
187 || type == NPY_LONG) {
188 needcopy = needcast =
true;
189 new_typenum = NPY_INT;
192 failmsg(
"Argument data type is not supported");
193 m.allocator = &g_numpyAllocator;
199 const int CV_MAX_DIM = 32;
202 int ndims = PyArray_NDIM(oarr);
203 if (ndims >= CV_MAX_DIM) {
204 failmsg(
"Dimensionality of argument is too high");
206 m.allocator = &g_numpyAllocator;
210 int size[CV_MAX_DIM + 1];
211 size_t step[CV_MAX_DIM + 1];
212 size_t elemsize = CV_ELEM_SIZE1(type);
213 const npy_intp* _sizes = PyArray_DIMS(oarr);
214 const npy_intp* _strides = PyArray_STRIDES(oarr);
215 bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;
217 for (
int i = ndims - 1; i >= 0 && !needcopy; i--) {
222 if ((i == ndims - 1 && (
size_t) _strides[i] != elemsize)
223 || (i < ndims - 1 && _strides[i] < _strides[i + 1]))
227 if (ismultichannel && _strides[1] != (npy_intp) elemsize * _sizes[2])
233 o = PyArray_Cast(oarr, new_typenum);
234 oarr = (PyArrayObject*) o;
236 oarr = PyArray_GETCONTIGUOUS(oarr);
237 o = (PyObject*) oarr;
240 _strides = PyArray_STRIDES(oarr);
243 for (
int i = 0; i < ndims; i++) {
244 size[i] = (int) _sizes[i];
245 step[i] = (size_t) _strides[i];
251 step[ndims] = elemsize;
255 if (ismultichannel) {
257 type |= CV_MAKETYPE(0, size[2]);
260 if (ndims > 2 && !allowND) {
261 failmsg(
"%s has more than 2 dimensions");
264 m = Mat(ndims, size, type, PyArray_DATA(oarr), step);
265 m.u = g_numpyAllocator.allocate(o, ndims, size, type, step);
272 m.allocator = &g_numpyAllocator;
279 PyObject* matToNDArrayBoostConverter::convert(Mat
const& m) {
284 if (!p->u || p->allocator != &g_numpyAllocator)
286 temp.allocator = &g_numpyAllocator;
287 ERRWRAP2(m.copyTo(temp));
290 PyObject* o = (PyObject*) p->u->userdata;
295 matFromNDArrayBoostConverter::matFromNDArrayBoostConverter() {
296 boost::python::converter::registry::push_back(convertible, construct,
297 boost::python::type_id<Mat>());
301 void* matFromNDArrayBoostConverter::convertible(PyObject*
object) {
302 if (!PyArray_Check(
object)) {
306 const int CV_MAX_DIM = 32;
308 PyArrayObject* oarr = (PyArrayObject*)
object;
310 int typenum = PyArray_TYPE(oarr);
311 if (typenum != NPY_INT64 && typenum != NPY_UINT64 && typenum != NPY_LONG
312 && typenum != NPY_UBYTE && typenum != NPY_BYTE
313 && typenum != NPY_USHORT && typenum != NPY_SHORT
314 && typenum != NPY_INT && typenum != NPY_INT32
315 && typenum != NPY_FLOAT && typenum != NPY_DOUBLE) {
318 int ndims = PyArray_NDIM(oarr);
320 if (ndims >= CV_MAX_DIM) {
327 void matFromNDArrayBoostConverter::construct(PyObject*
object,
328 boost::python::converter::rvalue_from_python_stage1_data* data) {
329 namespace python = boost::python;
332 python::handle<> handle(python::borrowed(
object));
336 typedef python::converter::rvalue_from_python_storage<Mat> storage_type;
337 void* storage =
reinterpret_cast<storage_type*
>(data)->storage.bytes;
343 PyArrayObject* oarr = (PyArrayObject*) object;
345 bool needcopy =
false, needcast =
false;
346 int typenum = PyArray_TYPE(oarr), new_typenum = typenum;
347 int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S :
348 typenum == NPY_USHORT ? CV_16U :
349 typenum == NPY_SHORT ? CV_16S :
350 typenum == NPY_INT ? CV_32S :
351 typenum == NPY_INT32 ? CV_32S :
352 typenum == NPY_FLOAT ? CV_32F :
353 typenum == NPY_DOUBLE ? CV_64F : -1;
356 needcopy = needcast =
true;
357 new_typenum = NPY_INT;
362 const int CV_MAX_DIM = 32;
364 int ndims = PyArray_NDIM(oarr);
366 int size[CV_MAX_DIM + 1];
367 size_t step[CV_MAX_DIM + 1];
368 size_t elemsize = CV_ELEM_SIZE1(type);
369 const npy_intp* _sizes = PyArray_DIMS(oarr);
370 const npy_intp* _strides = PyArray_STRIDES(oarr);
371 bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;
373 for (
int i = ndims - 1; i >= 0 && !needcopy; i--) {
378 if ((i == ndims - 1 && (
size_t) _strides[i] != elemsize)
379 || (i < ndims - 1 && _strides[i] < _strides[i + 1]))
383 if (ismultichannel && _strides[1] != (npy_intp) elemsize * _sizes[2])
389 object = PyArray_Cast(oarr, new_typenum);
390 oarr = (PyArrayObject*)
object;
392 oarr = PyArray_GETCONTIGUOUS(oarr);
393 object = (PyObject*) oarr;
396 _strides = PyArray_STRIDES(oarr);
399 for (
int i = 0; i < ndims; i++) {
400 size[i] = (int) _sizes[i];
401 step[i] = (size_t) _strides[i];
407 step[ndims] = elemsize;
411 if (ismultichannel) {
413 type |= CV_MAKETYPE(0, size[2]);
419 cv::Mat* m =
new (storage) cv::Mat(ndims, size, type, PyArray_DATA(oarr), step);
420 m->u = g_numpyAllocator.allocate(
object, ndims, size, type, step);
421 m->allocator = &g_numpyAllocator;
423 data->convertible = storage;