HSImage
Hyperspectral Image Interface Library for ENVI-BIL image files
 All Classes Functions Variables Typedefs Groups Pages
pyboost_cv3_converter.cpp
1 /*
2  * CV3BoostConverter.cpp
3  *
4  * Created on: May 21, 2015
5  * Author: Gregory Kramida
6  * Copyright: 2015 Gregory Kramida
7  */
8 #define NO_IMPORT_ARRAY
9 #define PY_ARRAY_UNIQUE_SYMBOL pbcvt_ARRAY_API
10 #include "pyboostconverter/pyboostcvconverter.hpp"
11 #if CV_VERSION_MAJOR == 3
12 namespace pbcvt {
13 using namespace cv;
14 //=================== ERROR HANDLING =========================================================
15 
16 static int failmsg(const char *fmt, ...) {
17  char str[1000];
18 
19  va_list ap;
20  va_start(ap, fmt);
21  vsnprintf(str, sizeof(str), fmt, ap);
22  va_end(ap);
23 
24  PyErr_SetString(PyExc_TypeError, str);
25  return 0;
26 }
27 
28 static PyObject* failmsgp(const char *fmt, ...)
29  {
30  char str[1000];
31 
32  va_list ap;
33  va_start(ap, fmt);
34  vsnprintf(str, sizeof(str), fmt, ap);
35  va_end(ap);
36 
37  PyErr_SetString(PyExc_TypeError, str);
38  return 0;
39 }
40 
41 //=================== THREADING ==============================================================
42 class PyAllowThreads {
43 public:
44  PyAllowThreads() :
45  _state(PyEval_SaveThread()) {
46  }
47  ~PyAllowThreads() {
48  PyEval_RestoreThread(_state);
49  }
50 private:
51  PyThreadState* _state;
52 };
53 
54 class PyEnsureGIL {
55 public:
56  PyEnsureGIL() :
57  _state(PyGILState_Ensure()) {
58  }
59  ~PyEnsureGIL() {
60  PyGILState_Release(_state);
61  }
62 private:
63  PyGILState_STATE _state;
64 };
65 
66 enum {
67  ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2
68 };
69 
70 class NumpyAllocator:
71  public MatAllocator {
72 public:
73  NumpyAllocator() {
74  stdAllocator = Mat::getStdAllocator();
75  }
76  ~NumpyAllocator() {
77  }
78 
79  UMatData* allocate(PyObject* o, int dims, const int* sizes, int type,
80  size_t* step) const {
81  UMatData* u = new UMatData(this);
82  u->data = u->origdata = (uchar*) PyArray_DATA((PyArrayObject*) o);
83  npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o);
84  for (int i = 0; i < dims - 1; i++)
85  step[i] = (size_t) _strides[i];
86  step[dims - 1] = CV_ELEM_SIZE(type);
87  u->size = sizes[0] * step[0];
88  u->userdata = o;
89  return u;
90  }
91 
92  UMatData* allocate(int dims0, const int* sizes, int type, void* data,
93  size_t* step, int flags, UMatUsageFlags usageFlags) const {
94  if (data != 0) {
95  CV_Error(Error::StsAssert, "The data should normally be NULL!");
96  // probably this is safe to do in such extreme case
97  return stdAllocator->allocate(dims0, sizes, type, data, step, flags,
98  usageFlags);
99  }
100  PyEnsureGIL gil;
101 
102  int depth = CV_MAT_DEPTH(type);
103  int cn = CV_MAT_CN(type);
104  const int f = (int) (sizeof(size_t) / 8);
105  int typenum =
106  depth == CV_8U ? NPY_UBYTE :
107  depth == CV_8S ? NPY_BYTE :
108  depth == CV_16U ? NPY_USHORT :
109  depth == CV_16S ? NPY_SHORT :
110  depth == CV_32S ? NPY_INT :
111  depth == CV_32F ? NPY_FLOAT :
112  depth == CV_64F ?
113  NPY_DOUBLE :
114  f * NPY_ULONGLONG + (f ^ 1) * NPY_UINT;
115  int i, dims = dims0;
116  cv::AutoBuffer<npy_intp> _sizes(dims + 1);
117  for (i = 0; i < dims; i++)
118  _sizes[i] = sizes[i];
119  if (cn > 1)
120  _sizes[dims++] = cn;
121  PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);
122  if (!o)
123  CV_Error_(Error::StsError,
124  ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
125  return allocate(o, dims0, sizes, type, step);
126  }
127 
128  bool allocate(UMatData* u, int accessFlags,
129  UMatUsageFlags usageFlags) const {
130  return stdAllocator->allocate(u, accessFlags, usageFlags);
131  }
132 
133  void deallocate(UMatData* u) const {
134  if (u) {
135  PyEnsureGIL gil;
136  PyObject* o = (PyObject*) u->userdata;
137  Py_XDECREF(o);
138  delete u;
139  }
140  }
141 
142  const MatAllocator* stdAllocator;
143 };
144 
145 //=================== ALLOCATOR INITIALIZTION ==================================================
146 NumpyAllocator g_numpyAllocator;
147 
148 //=================== STANDALONE CONVERTER FUNCTIONS =========================================
149 
150 PyObject* fromMatToNDArray(const Mat& m) {
151  if (!m.data)
152  Py_RETURN_NONE;
153  Mat temp,
154  *p = (Mat*) &m;
155  if (!p->u || p->allocator != &g_numpyAllocator) {
156  temp.allocator = &g_numpyAllocator;
157  ERRWRAP2(m.copyTo(temp));
158  p = &temp;
159  }
160  PyObject* o = (PyObject*) p->u->userdata;
161  Py_INCREF(o);
162  return o;
163 }
164 
165 Mat fromNDArrayToMat(PyObject* o) {
166  cv::Mat m;
167  bool allowND = true;
168  if (!PyArray_Check(o)) {
169  failmsg("argument is not a numpy array");
170  if (!m.data)
171  m.allocator = &g_numpyAllocator;
172  } else {
173  PyArrayObject* oarr = (PyArrayObject*) o;
174 
175  bool needcopy = false, needcast = false;
176  int typenum = PyArray_TYPE(oarr), new_typenum = typenum;
177  int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S :
178  typenum == NPY_USHORT ? CV_16U :
179  typenum == NPY_SHORT ? CV_16S :
180  typenum == NPY_INT ? CV_32S :
181  typenum == NPY_INT32 ? CV_32S :
182  typenum == NPY_FLOAT ? CV_32F :
183  typenum == NPY_DOUBLE ? CV_64F : -1;
184 
185  if (type < 0) {
186  if (typenum == NPY_INT64 || typenum == NPY_UINT64
187  || type == NPY_LONG) {
188  needcopy = needcast = true;
189  new_typenum = NPY_INT;
190  type = CV_32S;
191  } else {
192  failmsg("Argument data type is not supported");
193  m.allocator = &g_numpyAllocator;
194  return m;
195  }
196  }
197 
198 #ifndef CV_MAX_DIM
199  const int CV_MAX_DIM = 32;
200 #endif
201 
202  int ndims = PyArray_NDIM(oarr);
203  if (ndims >= CV_MAX_DIM) {
204  failmsg("Dimensionality of argument is too high");
205  if (!m.data)
206  m.allocator = &g_numpyAllocator;
207  return m;
208  }
209 
210  int size[CV_MAX_DIM + 1];
211  size_t step[CV_MAX_DIM + 1];
212  size_t elemsize = CV_ELEM_SIZE1(type);
213  const npy_intp* _sizes = PyArray_DIMS(oarr);
214  const npy_intp* _strides = PyArray_STRIDES(oarr);
215  bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;
216 
217  for (int i = ndims - 1; i >= 0 && !needcopy; i--) {
218  // these checks handle cases of
219  // a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases
220  // b) transposed arrays, where _strides[] elements go in non-descending order
221  // c) flipped arrays, where some of _strides[] elements are negative
222  if ((i == ndims - 1 && (size_t) _strides[i] != elemsize)
223  || (i < ndims - 1 && _strides[i] < _strides[i + 1]))
224  needcopy = true;
225  }
226 
227  if (ismultichannel && _strides[1] != (npy_intp) elemsize * _sizes[2])
228  needcopy = true;
229 
230  if (needcopy) {
231 
232  if (needcast) {
233  o = PyArray_Cast(oarr, new_typenum);
234  oarr = (PyArrayObject*) o;
235  } else {
236  oarr = PyArray_GETCONTIGUOUS(oarr);
237  o = (PyObject*) oarr;
238  }
239 
240  _strides = PyArray_STRIDES(oarr);
241  }
242 
243  for (int i = 0; i < ndims; i++) {
244  size[i] = (int) _sizes[i];
245  step[i] = (size_t) _strides[i];
246  }
247 
248  // handle degenerate case
249  if (ndims == 0) {
250  size[ndims] = 1;
251  step[ndims] = elemsize;
252  ndims++;
253  }
254 
255  if (ismultichannel) {
256  ndims--;
257  type |= CV_MAKETYPE(0, size[2]);
258  }
259 
260  if (ndims > 2 && !allowND) {
261  failmsg("%s has more than 2 dimensions");
262  } else {
263 
264  m = Mat(ndims, size, type, PyArray_DATA(oarr), step);
265  m.u = g_numpyAllocator.allocate(o, ndims, size, type, step);
266  m.addref();
267 
268  if (!needcopy) {
269  Py_INCREF(o);
270  }
271  }
272  m.allocator = &g_numpyAllocator;
273  }
274  return m;
275 }
276 
277 //=================== BOOST CONVERTERS =======================================================
278 
279 PyObject* matToNDArrayBoostConverter::convert(Mat const& m) {
280  if (!m.data)
281  Py_RETURN_NONE;
282  Mat temp,
283  *p = (Mat*) &m;
284  if (!p->u || p->allocator != &g_numpyAllocator)
285  {
286  temp.allocator = &g_numpyAllocator;
287  ERRWRAP2(m.copyTo(temp));
288  p = &temp;
289  }
290  PyObject* o = (PyObject*) p->u->userdata;
291  Py_INCREF(o);
292  return o;
293 }
294 
295 matFromNDArrayBoostConverter::matFromNDArrayBoostConverter() {
296  boost::python::converter::registry::push_back(convertible, construct,
297  boost::python::type_id<Mat>());
298 }
299 
301 void* matFromNDArrayBoostConverter::convertible(PyObject* object) {
302  if (!PyArray_Check(object)) {
303  return NULL;
304  }
305 #ifndef CV_MAX_DIM
306  const int CV_MAX_DIM = 32;
307 #endif
308  PyArrayObject* oarr = (PyArrayObject*) object;
309 
310  int typenum = PyArray_TYPE(oarr);
311  if (typenum != NPY_INT64 && typenum != NPY_UINT64 && typenum != NPY_LONG
312  && typenum != NPY_UBYTE && typenum != NPY_BYTE
313  && typenum != NPY_USHORT && typenum != NPY_SHORT
314  && typenum != NPY_INT && typenum != NPY_INT32
315  && typenum != NPY_FLOAT && typenum != NPY_DOUBLE) {
316  return NULL;
317  }
318  int ndims = PyArray_NDIM(oarr); //data type not supported
319 
320  if (ndims >= CV_MAX_DIM) {
321  return NULL; //too many dimensions
322  }
323  return object;
324 }
325 
327 void matFromNDArrayBoostConverter::construct(PyObject* object,
328  boost::python::converter::rvalue_from_python_stage1_data* data) {
329  namespace python = boost::python;
330  // Object is a borrowed reference, so create a handle indicting it is
331  // borrowed for proper reference counting.
332  python::handle<> handle(python::borrowed(object));
333 
334  // Obtain a handle to the memory block that the converter has allocated
335  // for the C++ type.
336  typedef python::converter::rvalue_from_python_storage<Mat> storage_type;
337  void* storage = reinterpret_cast<storage_type*>(data)->storage.bytes;
338 
339  // Allocate the C++ type into the converter's memory block, and assign
340  // its handle to the converter's convertible variable. The C++
341  // container is populated by passing the begin and end iterators of
342  // the python object to the container's constructor.
343  PyArrayObject* oarr = (PyArrayObject*) object;
344 
345  bool needcopy = false, needcast = false;
346  int typenum = PyArray_TYPE(oarr), new_typenum = typenum;
347  int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S :
348  typenum == NPY_USHORT ? CV_16U :
349  typenum == NPY_SHORT ? CV_16S :
350  typenum == NPY_INT ? CV_32S :
351  typenum == NPY_INT32 ? CV_32S :
352  typenum == NPY_FLOAT ? CV_32F :
353  typenum == NPY_DOUBLE ? CV_64F : -1;
354 
355  if (type < 0) {
356  needcopy = needcast = true;
357  new_typenum = NPY_INT;
358  type = CV_32S;
359  }
360 
361 #ifndef CV_MAX_DIM
362  const int CV_MAX_DIM = 32;
363 #endif
364  int ndims = PyArray_NDIM(oarr);
365 
366  int size[CV_MAX_DIM + 1];
367  size_t step[CV_MAX_DIM + 1];
368  size_t elemsize = CV_ELEM_SIZE1(type);
369  const npy_intp* _sizes = PyArray_DIMS(oarr);
370  const npy_intp* _strides = PyArray_STRIDES(oarr);
371  bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;
372 
373  for (int i = ndims - 1; i >= 0 && !needcopy; i--) {
374  // these checks handle cases of
375  // a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases
376  // b) transposed arrays, where _strides[] elements go in non-descending order
377  // c) flipped arrays, where some of _strides[] elements are negative
378  if ((i == ndims - 1 && (size_t) _strides[i] != elemsize)
379  || (i < ndims - 1 && _strides[i] < _strides[i + 1]))
380  needcopy = true;
381  }
382 
383  if (ismultichannel && _strides[1] != (npy_intp) elemsize * _sizes[2])
384  needcopy = true;
385 
386  if (needcopy) {
387 
388  if (needcast) {
389  object = PyArray_Cast(oarr, new_typenum);
390  oarr = (PyArrayObject*) object;
391  } else {
392  oarr = PyArray_GETCONTIGUOUS(oarr);
393  object = (PyObject*) oarr;
394  }
395 
396  _strides = PyArray_STRIDES(oarr);
397  }
398 
399  for (int i = 0; i < ndims; i++) {
400  size[i] = (int) _sizes[i];
401  step[i] = (size_t) _strides[i];
402  }
403 
404  // handle degenerate case
405  if (ndims == 0) {
406  size[ndims] = 1;
407  step[ndims] = elemsize;
408  ndims++;
409  }
410 
411  if (ismultichannel) {
412  ndims--;
413  type |= CV_MAKETYPE(0, size[2]);
414  }
415  if (!needcopy) {
416  Py_INCREF(object);
417  }
418 
419  cv::Mat* m = new (storage) cv::Mat(ndims, size, type, PyArray_DATA(oarr), step);
420  m->u = g_numpyAllocator.allocate(object, ndims, size, type, step);
421  m->allocator = &g_numpyAllocator;
422  m->addref();
423  data->convertible = storage;
424 }
425 
426 } //end namespace pbcvt
427 #endif